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While for many important problems the quantum mechanical coupling
between the motion of the nuclei and of the electrons in a diatomic mole-
cule may be ignored, there are others in which this coupling is the main
factor. Among the various phenomena which are conditioned by this
coupling and which have recently attracted attention the following may
be mentioned:

1. The mechanism of the dissociation of molecules by light absorption.
This question has been discussed by Franck who, with his co-workers, is
also doing important experimental work in this field.'

2. The mechanism of dissociation of molecules as a primary consequence
of excitation by electron collision. The ideas of Franck on (1) have here
been applied by Birge and Sponer2 to a discussion of the experimental
results of Hogness andL .

3. The relative transition probabilities for the various vibrational
transitions associated with a single electron transition in the emission or
absorption of light by a molecule; i.e., the problem of intensity distribution
in electronic band systems. This question has been treated recently by
the writer.3

4. The mechanism of the process whereby molecules may be excited
to vibration levels by electron collision without simultaneous electronic
excitation. That this process actually occurs is proved by the recent
experiments of Harries, carried out in Franck's laboratory.4

All of these phenomena-permit of being understood in terms of the new
quantum mechanics, at least in a qualitative way, as it is the purpose of
this note to show.
The complete quantum-mechanical problem of a diatomic molecule,

from the Schrodinger point of view, calls for the solution of a partial dif-
ferential equation in 3N + 6 independent variables, if N is the number
of electrons in the molecule. The problem is distinguished from the prob-
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lem of a complicated atom, by the presence of two particles of large mass,
instead of one. The usual theory of the diatomic molecule, however,
replaces the actual model of two nuclei and N electrons affecting each other
with Coulomb forces by one which consists simply of two masses affecting
each other by a more or less arbitrary potential energy law. This effective
potential energy is supposed to result from the average of the reactions
of the rapidly moving electrons on the nuclei together with the mutual
Coulomb repulsion of the nuclei.
The known success of this simpler model in explaining the energy levels,

in general, and the infra-red transition probabilities, makes it natural to
suppose that the heavy masses of the nuclei bring about a partial or ap-
proximate separation of variables in the Schrodinger equation. The
three coordinates which correspond to the motion of the center of gravity
of the system in space are readily separated out. Similarly, if rotation
is neglected, the system is described by the nuclear separation, R, and
the electronic coordinates, denoted in the aggregate by X. The assump-
tion of partial separation of variables here made requires the two follow-
ing results:

(a) The energy-levels (eigen-wert parameter) are the sum of a func-
tion depending only on the electronic quantum numbers, denoted in the
aggregate by e, and a function of both the electronic quantum numbers
and a vibrational quantum number, n.

(b) The amplitude function, Afr, is the product of two factQrs, one of
which depends on all of the quantum numbers and only the nuclear sepa-
ration, R, while the other depends only on the electronic quantum numbers
and the electronic and nuclear coordinates. That is, one has

E = El(e) + E2(e, n)
i&(e, n, X, R) = 61(e, X, R)i2(e, n, R).

This assumption, of course, needs justification in terms of the theory
of the Schr6dinger equation. An attempt to do this is being made.
But, making the assumption, the four coupling phenomena already listed
come within a single picture.
Numbers 1 and 3 are simpler than 2 and 4 for radiative transitions

are simpler than those involving electron collisions. For the purpose of
computing such transition probabilities one has to consider the matrix
component of the electric moment of the molecule with regard to the initial
and final state. This matrix component, referring to the initial state
e', n' and the final state e",n", is given by

M(e'e"n'n") = ff M(X, R)#(e'n'XR)P(e"n"XR)dXdR
in which M(X, R) is equal to the electric moment of the molecule in the
configuration X, R. The integration is over all values of the coordinates.
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For the purpose of comparing various vibration transitions associated
with the same electronic transition, one may perform the integration over
the electronic coordinates. One obtains thereby an effective electric
moment function, m(R), for computing the different vibration transitions.
The complete matrix component is then the integral of this moment
function over the product of the two vibrational factors of the amplitude
function.
The vibrational factor in this formula may safely be identified with

the amplitude function obtained from the simple anharmonic oscillator
treatment of the molecule problem. These amplitude functions have the
essential characteristic that they approach a zero value asymptotically,
but rapidly, outside of the region of the corresponding classical motion.
Inside this region they oscillate, having as many zeros as the order of the
quantum state. Herein lies the quantum mechanical justification of the
picture used by Franck in discussing the dissociation of molecules by light
absorption, and which has found application in the theory of transition
probabilities in electronic band systems.
The Franck picture is that the favored transitions are those for which

the classical vibrational motions cover over-lapping regions of the nuclear
separation coordinate. Clearly this comes out of the quantum mechanical
treatment by the property of the Schrodinger amplitude function of having
its largest values at the coordinate values covered by the classical motion.
Hence the larger values of the matrix components are, in general, those
for which both amplitude function factors in the integrand have large
values for the same values of the independent variable; i.e., those of
over-lapping classical motion. The quantum-mechanical formula differs
in two respects from the earlier treatment. One is that transitions of
small probability corresponding to non-over-lapping classical vibration
motions are made possible by the fact that the Schr6dinger amplitude
functions have values outside the range of the classical motion. Also,
since the amplitude function oscillates within the range of the classical
motion there is the possibility of a kind of interference in the transition
probabilities, reducing the value associated with a transition which corre-
sponds to over-lapping classical motions. This may be the explanation
of the irregular alternations of intensity in the Wood's resonance spectrum
of iodine, already discussed by Lenz in terms of the old correspondence
principle for intensities.
To illustrate the semi-quantitative numerical behavior of the new

quantum mechanical formula, two cases have been worked out roughly.
For the purpose, m(R) was regarded simply as a constant and the vibra-
tional amplitude functions were taken to be the Hermitian polynomial
harmonic oscillator solutions. 5 The harmonic oscillator solutions depend
on the initial and final electronic state through the vibration frequencies
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and centers of oscillation associated with the two states. The relative
transition probabilities are measured by the product of the square of the
matrix component and the fourth power of the quantum frequency in-
volved, in accordance with 'the classical dipole radiation formula.

Thus, applied to the n' = 0 progression of the Schumann-Runge bands
of oxygen, one obtains for the relative intensity of the bands corresponding
to various final state vibration quantum numbers, n":

n= 0 1 2 3 4 5 6
8.4X10-6 9X10-5 5X10-4 1.6X10-3 6.6X10-3 0.008 0.019

7 ... 13 15 17
0.03 ... 0.88 1.00 1.13

Experimentally, Runge measured on his plates only the balids n" = 11
to n" = 17, as being the strongest. This is in good semi-quantitative
agreement with the foregoing calculations.
On the other hand, SiN offers a band system characterized by a very

slight change in moment of inertia and frequency of vibration between
the two electronic states.6 Correspondingly, zero change in the vibration
quantum number is the most probable. This comes out of the matrix
formula since, had there been no change in moment of inertia or natural
frequency, the two amplitude functions in the formula would have been
members of the same normal-orthogonal set of functions, so that only
the zero vibration change would be allowed. When this is "almost"
the case, the functions are "almost orthogonal" thus favoring the zero
change in vibrational quantum number.
Turning now to the coupling processes 2 and 4, one may interpret these

in essentially the same way as a consequence of Born's quantum me-
chanical analysis of the problem of the collision of a charged particle
with an atomic or molecular system.7 A free electron colliding with a
molecule interacts with each of the electrons and the nuclei in the mole-
cule according to the Coulomb law. If this energy of interaction be
developed in negative powers of the distance of the electron from the
center of gravity of the molecule, the development begins with an inverse
cube term representing the interaction between the free electron and the
dipole moment of the atom. The higher powers of the development
correspond to the interaction with the quadrupole and higher moments
of the electric charge of the molecule. When these are neglected, Born's
analysis shows the probabilities of excitation of a molecule by electron
impact are proportional to the square of the matrix component of the
electric moment of the molecule in regard to the initial and final states
in question. This, however, is the same quantity as that which measures
the probabilities of transition associated with light emission and ab-
sorption. Therefore, to the order of approximation which replaces the
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electron interaction with the molecule by that between the electron and
equivalent dipole, one has that vibration transitions associated with elec-
tronic excitation of the molecule will be the same whether the process is
radiative or a result of a collision. This is the justification of the argument
of Birge and Sponer in discussing the experiments of Hogness and Lunn.
Using th}is same analysis of the collision problem, it is clear that the

action of a colliding electron on a molecule in exciting vibration transitions
without electron excitation, the fourth type of coupling in the list, is a
consequence of the non-vanishing of the same matrix components as those
which measure the probability of vibration transitions in' infra-red,
vibration-rotation bands. The correlation is, however, not a sharp one,
for in the collision process the electric moments of higher order of the
molecule may be active.
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The problem of the motion of a particle attracted by two fixed centers
of force according to the Coulomb force law can be treated by classical
mechanics and has been used in quantum theory by Pauli and Niessen
for a theory of the hydrogen molecule ion.' In the quantum mechanics,
where the energy levels are determined as the "eigenwerte" of Schr6dinger's
equation, the variables are separable and the boundary value problem is
easily set up. But thus far a satisfactory treatment of the differential
equations involved is lacking. Burrau2 has recently carried out a numer-
ical integration of the problem for the lowest energy level of an electron
moving under the influence of two fixed centers of Coulomb attraction as a
function of the distance apart of these centers. In this paper, Burrau's
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